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Abstract

Diffusion creep refers to the phenomenon of flow on a surface along which is a concentration gradient. A number of well known mass
transfer problems that have usually been analyzed ignoring diffusion creep are revisited, including isobaric and equimolar counterdiffu-
sion, diffusion with one component stationary, and diffusion with surface reactions. The Kramers and Kistemaker model for the creep
velocity is used as a benchmark, and the implications of more recent advanced kinetic theory analyses explored. The validity of Graham’s
law for isobaric counterdiffusion is examined. The resulting phenomenon of diffusiophoresis of Stokesian particles is briefly discussed.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The no-slip boundary condition of viscous fluid flow
does not apply to a gas mixture when there is a concentra-
tion gradient along the boundary surface: there is a ‘‘diffu-
sion creep” velocity. This phenomenon is analogous to the
more well known ‘‘thermal creep” on a non-isothermal sur-
face that was first studied by Maxwell [1]. Both phenomena
are peculiar in that the kinetic theory of gases is used to
describe the molecule–surface interactions that yield the
velocities, and yet they can play an important role when
continuum equations suffice to describe the bulk flow.
Mass transfer problems in which the bulk flow is induced
by diffusion only (for example, the Stefan flow of diffusion
with one component stationary) are characterized by veloc-
ities of the same order as the diffusion creep velocity. The
correct analysis of such problems requires use of the diffu-
sion creep velocity boundary condition. In some situations
the only flow is that induced by diffusion creep.

For various reasons that will be discussed later, many
workers have not been aware of the existence of diffusion
creep in continuum flows, or have been mislead by incor-
rect analyses of the phenomenon. Standard mass transfer
texts do not mention diffusion creep, though the mono-
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graph on transport in porous catalysts by Jackson [2] does
deal with the topic. A number of relevant papers have
appeared, mainly in the chemical engineering literature,
but did not appear to have much impact. Recently, the
kinetic theory community has been active using advanced
kinetic theory to predict diffusion creep velocities for vari-
ous binary gas mixtures, and with different molecular mod-
els [3–5].

The purpose of the present study was to revisit a number
of well known mass transfer problems that almost always
have been analyzed ignoring diffusion creep. The elemen-
tary problems of isobaric and equimolar counterdiffusion
in a tube are amenable to approximate one-dimensional
analytical solution. However, problems such as diffusion
with one component stationary, and diffusion with surface
reactions, prove to be inherently two-dimensional, and may
require numerical solution of the governing equations.
Applications of concern include various methods of
measuring binary diffusion coefficients, crystal growth in
microgravity environments, and diffusiophoresis of non-
Brownian particles.

2. The diffusion creep velocity

A formula for the diffusion creep velocity was first
derived by Kramers and Kistemayer [6]. Equivalent formu-
las were obtained subsequently by Jackson [2] and others,
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Nomenclature

c mean molecular speed; molar concentration
D12 binary diffusion coefficient
d distance
J diffusive molar flux
j diffusive mass flux
Kn Knudsen number
L length
M molecular weight
m mass fraction
m molecular mass
N absolute molar or molecule flux
n absolute mass flux
P pressure
R radius
V particle velocity
v velocity
v̂ diffusion velocity
x mole fraction
z coordinate

Greek symbols

k mean free path
l viscosity; defined by Eq. (D.2)
q density
r slip coefficient

Subscripts

b bulk
i species i

w wall

Superscripts

x molar
D diffusiophoresis
KK Kramers and Kistemaker
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though the final results were often obtained using arguably
incorrect logic. The model used by these workers is a par-
ticularly simple one in which each species is imagined to
have an absolute velocity vi that is the sum of a diffusion
velocity and a mass or molar average velocity. Consider a
gas mixture adjacent to a z-direction wall. The number flux
of species i incident on the wall is (1/4)Nici: on an average,
each molecule carries transverse momentum mivi to the
wall. (All quantities are evaluated at a distance di from
the wall where on average the molecules of species i had
their last collision.) Then the total transverse momentum
flux on the wall is

1

4

X
i

N icimivi ¼
1

4

X
i

qicivi ð1Þ

If we assume perfectly diffuse scattering of the molecules by
the wall, Eq. (1) gives the net rate of momentum transfer to
the wall. In the absence of a pressure gradient, the net
momentum transfer rate to the wall is required to be zero
by a force balance; henceX

i

qicivi ¼ 0 ð2Þ

To proceed on a mass basis we write vi ¼ vw þ v̂i where vw

is the mass average velocity distant di from the wall. Now
ciM

1=2
i ¼ const: by equipartion of energy, and qi = miq:

substituting and solving for vw gives

vw ¼ �
P

miM
�1=2
i v̂iP

miM
�1=2
i

ð3Þ

For a binary mixture m1v̂1 ¼ �D12ðdm1=dzÞ ¼ �m2v̂2 by
Fick’s law; thus
vw ¼
1

M1=2
1

� 1

M1=2
2

m1

M1=2
1

þ m2

M1=2
2

D12

dm1

dz
ð4Þ

As an example, consider a mixture of helium (1) and air (2)
in a tube of length L, with m1 = 1 at z = 0, and m1 = 0 at
z = L. Then dm1/dz is negative and, since M1 < M2, vw is
negative. The mass average creep velocity is in the direction
of the diffusion of the heavier species, air.

The molar equivalent to Eq. (3) is obtained by writing
vi ¼ v�w þ v̂�i and qi = cxiMi to obtain

v�w ¼ �
P

xiM
1=2
i v̂�iP

xiM
1=2
i

ð5Þ

For a binary mixture x1v̂�1 ¼ �D12ðdx1=dzÞ ¼ x2v̂�2, thus

v�w ¼
M1=2

1 �M1=2
2

x1M1=2
1 þ x2M1=2

2

D12

dx1

dz
ð6Þ

Returning to the helium–air example, we see that v�w is po-
sitive. The molar average creep velocity is in the opposite
direction to the mass average value, and is in the direction
of diffusion of the lighter species, helium. The physics of
the model is clear when the molar based result is examined;
there must be a bulk motion of the gas in the direction of
helium diffusion to cancel the imbalance in momentum
transfer associated with the different molecular weights of
the species.

The simple diffusion model used here has many short-
comings. Nevertheless, analyses of equimass and equimolar
counterdiffusion, using Eqs. (4) and (6), respectively, yields
results in reasonable accord with experiment, particularly
when the two molecular weights are very different. Thus
these expressions will be used as a benchmark and the
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implications of more advanced kinetic theory discussed in
Appendix A.

3. Isobaric diffusion

3.1. Graham’s law

Graham [7] reported experiments on isobaric counter-
diffusion of various gas mixtures through a porous plug,
and concluded that the molar fluxes were inversely propor-
tional to the square root of molecular weight:

N 1

N 2

¼ � M2

M1

� �1=2

ð7Þ

The agreement between experiment and Eq. (7) was excel-
lent. Graham’s result was essentially ignored for over a
hundred years. Since Graham did not report the average
pore size of his Paris plaster plugs, some workers perhaps
concluded that the diffusion was in the Knudsen regime
(Kn = ‘/d� 1) for which kinetic theory yields Eq. (7).
But the pores in Paris plaster are in fact large, and the con-
tinuum limit Kn ? 0 applies. For true isobaric one-dimen-
sional diffusion, Newton’s second law requires that the
mass average velocity be zero: there is no pressure gradient
to overcome viscous or inertial forces. The absolute mass
flux of species 1 is then

n1 ¼ m1qvþ j1 ¼ j1 ¼ const: ð8Þ

and j1 = �j2 for a binary mixture. Thus

n1 ¼ �n2 or N 1M1 ¼ �N 2M2 ð9Þ

and

N 1

N 2

¼ �M2

M1

ð10Þ

which contradicts Eq. (7). Eq. (10) applies to an un-
bounded medium: thus there must be wall effect that causes
Eq. (7) to be valid for diffusion in a passage, as noted by
Kucherov and Rikenglaz in 1958 [8].

Eq. (7) is now known as Graham’s law. Although there
is some experimental data to the contrary, nearly all exper-
iments have shown the law to be valid over the whole
Knudsen number range from free molecule flow to contin-
uum diffusion. Hoogschagen [9] used a porous plug with
0.8 mm diameter pores to ensure a small Knudsen number.
He confirmed Graham’s law for He–O2, N2–O2, and CO2–
O2 mixtures. Evans et al. [10] performed experiments on
He–Ar counterdiffusion in large pore graphite (pore radius
�3 lm) at 2 atm total pressure: they found agreement with
Graham’s law within an experimental error of 4%. The
1962 experimental results of Rothfield [11] are less support-
ive of Graham’s law, particularly for interdiffusion of He
and C4H10 or C5H12. Remick and Geankoplis [12] used a
bundle of 644 glass capillaries 0.96 cm long and 3.9 lm
diameter. The Knudsen number was varied by varying
the absolute pressure from 0.444 to 300.2 mm Hg: above
about 100 mm continuum conditions obtained. Graham’s
law was found to apply over the whole pressure range for
He–N2 interdiffusion. Deviations in the continuum range
were no larger than in the free molecule range and could
be attributed to experimental error (3–6%).

3.2. Mass based analysis

Consider isobaric, isothermal binary diffusion in a tube
of length L. Plug flow with a velocity equal to the mass
average diffusion creep velocity vw, given by Eq. (4) is
assumed. The flow is not strictly one-dimensional because
vw is not constant along the tube: however, the Reynolds
number is very small (�1) so that the velocity profile
remains nearly uniform. Also, the small pressure gradient
associated with the acceleration of the flow will be ignored.
From Eq. (4).

vw ¼ f ðm1ÞD12

dm1

dz
; f ðm1Þ ¼

1

M1=2
1

� 1

M1=2
2

m1

M1=2
1

þ m2

M1=2
2

ð11Þ

The absolute mass flux of species 1 is

n1 ¼ m1qvw þ j1 ¼ m1qvw � qD12

dm1

dz
ð12Þ

substituting from Eq. (11)

n1 ¼ qD12ðm1f ðm1Þ � 1Þ dm1

dz
ð13aÞ

Similarly

n2 ¼ qD12ðm2f ðm1Þ � 1Þ dm1

dz
ð13bÞ

Dividing

n1

n2

¼ m1f ðm1Þ � 1

m2f ðm1Þ þ 1
ð14Þ

At z = 0, m1 = 1, m2 = 0; from Eq. (11)

f ðm1Þ ¼
1

M1=2
1

� 1

M1=2
2

1

M1=2
1

� 0
¼ 1� M1

M2

� �1=2

Substituting in Eq. (14)

n1

n2

¼ � M1

M2

� �1=2

ð15Þ

Since n1/n2 is constant by mass species conservation, Eq.
(15) applies at all z (and is easily checked at z = L). On a
molar basis Eq. (15) becomes

N 1

N 2

¼ � M2

M1

� �1=2

ð16Þ

which is Graham’s law. Thus the simple benchmark model
for diffusion creep velocity, Eq. (4), predicts Graham’s law
exactly, confirming that Graham’s law for continuum diffu-
sion is the result of a non-zero mass average velocity at the
wall. Recognition of the role played by diffusion creep was
slow, partly due to competing derivations of Graham’s law



Fig. 1. Concentration profiles for isobaric binary diffusion: M1 = 1,
M2 = 4.
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using the ‘‘dusty gas” model of porous solids, for example
[13–15]. However, it can be shown that the dusty gas model
cannot, in principle, give Graham’s law, and actually
exhibits a singular behavior in the continuum limit.

It is straightforward to continue the mass based analysis
to obtain the concentration profiles and species fluxes.
However, it is simpler to use a mole based analysis to take
advantage of the constant total molar concentration result-
ing from isobaric and isothermal conditions.

3.3. Mole based analysis

Rather than proceeding as was done for the mass based
analysis in Section 3.1, we will follow Scott and Cox [16]
and make use of Graham’s law: it has been shown already
that Eq. (4), and hence Eq. (6), are consistent with Gra-
ham’s law. The absolute molar flux of species 1 is

N 1 ¼ x1ðN 1 þ N 2Þ � cD12

dx1

dz
ð17Þ

Hence

N 1 1� x1 1þ N 2

N 1

� �� �
¼ �cD12

dx1

dz

Defining U = 1 + N2/N1 and separating variables

dx1

Ux1 � 1
¼ N 1 dz

cD12

ð18Þ

Integration gives the concentration profile as

Ux1 � 1

Ux110 � 1
¼ eUN1z=cD1z ð19Þ

where

N 1 ¼
cD12

UL
ln

Ux1;L � 1

Ux1;0 � 1

As a simple illustrative example take M1 = 1, M2 = 4;
then N2/N1 = �(1/4)1/2 = �1/2 and U = �1/2. Also take
x1,0 = 0, x1,L = 1. Substituting in Eqs. (18) and (19)

N 1 ¼ 2 ln
1

2

cD12

L
¼ �1:387

cD12

L
ð20Þ

x1 ¼ 2� 2e
1
2N1z=cD12 ¼ 2� 2e�0:6931z=L ð21Þ

Notice that N1 is 1.387 times the value corresponding to a
linear profile. Since v�w is negative for M1 < M2, the shape
of the concentration profiles is as shown in Fig. 1. The con-
vective flow augments the diffusion of the lighter species,
and is opposite to the diffusion of the heavier species. Note
also that Eq. (18) can be obtained by substituting Eq. (6) in

Eq. (17) with cv* = N1 + N2.

3.4. New results

The good agreement between experiment in the form of
Graham’s law and theory in the form of the Kramers and
Kistemaker formula for the diffusion creep velocity bears
further examination in the light of new advanced kinetic
theory models for diffusion creep. These models will be dis-
cussed in Appendix A, and the implications for isobaric
diffusion explored in Appendix C.

4. Equimolar counterdiffusion

The analysis and experiments of Kramers and Kiste-
maker [6] for equimolar counterdiffusion were major con-
tributions to the subject. More recently, Young and Todd
[17] revisited the continuum analysis of equimolar counter-
diffusion and developed it in a form that allows satisfactory
interpolation with free molecule flow analysis for applica-
tion in porous solids: the analysis that follows has elements
of their development.

Since a one-dimensional diffusion model is sought, we
assume plug flow at a velocity equal to the bulk velocity:
for laminar flow in a tube

vb ¼ vw þ
R2

8l
� dP

dx

� �
ð22Þ

(vw = 0 for Poiseuille flow). Add the diffusion velocity of
species i, v̂i (which is not a function of r in a one-dimen-
sional model)

vb þ v̂i ¼ vw þ v̂i þ
R2

8l
� dP

dx

� �

or

vbi ¼ vwi þ
R2

8l
� dP

dx

� �
ð23Þ

in terms of the species absolute velocity vi. Now subtract v̂�i
the diffusion velocity relative to the mole average velocity

vbi � v̂�i ¼ vwi � v̂�i þ
R2

8l
� dP

dx

� �

or

v�b ¼ v�w þ
R2

8l
� dP

dx

� �
ð24Þ
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We see that an equation of the form of Eq. (22) is valid on
a mass or molar basis for one-dimensional flow. Then

R2

8l
dP
dz
¼ �ðv�b � v�wÞ ð25Þ

For equimolar counterdiffusion in a binary mixture, v�b ¼ 0
and

J �1 ¼ �J �2 ¼ �cD12

dx1

dz
¼ const: ð26Þ

Assume c constant, which implies P and T are constant.
Then for a tube length L

dx1

dz
¼ � 1

L
ð27Þ

substituting Eqs. (6) and (27) in Eq. (25) gives

dP
dz
¼ � 8lD12

R2L

M1=2
1 �M1=2

2

x1M1=2
1 þ x2M1=2

2

ð28Þ

Since l = l(x1) and dz = � Ldx1, the variables in Eq. (28)
are separable. If following Kramers and Kistemaker we as-
sume l constant, there is the simple result

DP ¼ 4lD12

R2
ln

M1

M2

� �
ð29Þ

To compare this pressure drop to that if there were no dif-
fusion creep we use the Poiseuille flow result

dP
dz
¼ � 8l

R2
vb ð30Þ

qvb ¼ M1N 1 þM2N 2 ¼ J �1ðM1 �M2Þ ¼
cD12

L
ðM1 �M2Þ

vb ¼
c
q

D12

L
ðM1 �M2Þ ¼

D12

L
M1 �M2

M
ð31Þ

dP
dz
¼ � 8lD12ðM1 �M2Þ

R2L

Z L

0

1

x1M1 þ x2M2

dz

for l constant. Again using dz = �Ldx1 gives

dP
dz
¼ 8lD12

R2
ln

M1

M2

ð32Þ

which is exactly twice the value obtained with creep.
Kramers and Kistemaker performed experiments on

interdiffusion of hydrogen in air in a 0.460 mm diameter,
40 cm long capillary tube. A quasi-steady state was
attained corresponding to equimolar counterdiffusion and
the pressure differential measured. (Note that, contrary to
statements made in many mass transfer texts, a pressure
gradient in required for equimolar counterdiffusion since
the mass average velocity is non-zero – and is given by
Eq. (28).) They found that the measured pressure drop
was 66% of the Poiseuille flow result, Eq. (32) and 32%
higher than the expected value given by numerical integra-
tion of Eq. (28) to account for the dependence of viscosity
on composition. Kramers and Kistemaker recommend fur-
ther experiments to evaluate the validity of Eq. (28). How-
ever, another possibility is that their model for diffusion
creep velocity is not completely adequate. Recent advanced
kinetic theory models of diffusion creep are discussed in
Appendix A, and their application to equimolar counter-
diffusion in Appendix B.

5. Diffusion with one component stationary

Analyses of diffusion with one component stationary are
presented in standard texts, sometimes in connection with
the Stefan tube used to measure diffusion coefficients, e.g.
[18], but also in connection with heatpipes, e.g. [19]. These
analyses are one-dimensional and are essentially exact for
an unbounded medium. When applied to a gas mixture
confined in a duct, the assumption of plug flow is made.
Some years ago there was concern about the impact of vio-
lating the usual non-slip boundary condition of fluid
mechanics. An exact numerical solution for a cylindrical
tube was obtained by McDonald et al. [20], who showed
that even at very high mass transfer rates the error incurred
in using the 1D analysis was less than 5%. Unaware of this
work, related numerical studies were made by Meyer and
Kostin [21], and Markham and Rosenberger [22]. At their
lower rates of mass transfer, the latter authors found no
error in one-dimensional predictions to within the 1% accu-
racy of the numerical results.

Whitaker [23] pointed out that the numerical studies
ignored the presence of diffusion creep, but did not take
the matter further. To examine the possible effect of the
creep velocity we will consider a one-dimensional model
with species 2 stationary. Then the absolute mass fluxes
of the two components are

n1 ¼ m1qvb � qD12

dm1

dz
ð33Þ

n2 ¼ m2qvb � qD12

dm2

dz
ð34Þ

Since n1 + n2 = n1 = qvb, Eq. (33) gives the bulk velocity as

vb ¼ �
1

1� m1

D12

dm1

dz
ð35Þ

From Eq. (4) the diffusion creep velocity with b = (M1/
M2)1/2 is

vw ¼
1� b

bþ m1ð1� bÞD12

dm1

dz
ð36Þ

The ratio of the creep velocity to the bulk velocity is then

vw

vb

¼ �ð1� m1Þð1� bÞ
bþ m1ð1� bÞ ð37Þ

The water vapor–air system has been of much interest in
connection with diffusion with one component stationary.
Then b = (18/29)1/2 = 0.79–0.8 and Eq. (37) becomes

vw

vb

¼ � 1� m1

4þ m1

Table 1 shows the result. At most vw is 25% of vb, and is in
the opposite direction to the bulk velocity. Since the



Table 1
The ratio of creep velocity to bulk velocity for water vapor diffusing
through stationary air

m1 0.01 0.1 0.5 0.9 0.99
vw/vb �0.25 �0.22 �0.11 �0.02 �0.002
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numerical studies that assumed vw = 0 showed negligible
effect on the mass transfer rate, these relatively small nega-
tive values of vw also should not have significant effect. If
the computer codes used to generate the results given in
Refs. [20,22] are still available it would be a relatively sim-
ple task to modify the boundary conditions and recalculate
results, though such an exercise would be of marginal va-
lue. The two-dimensional character of the real flow has
but a small effect on the mass transfer rate. Accounting
for creep velocity will give somewhat higher axial pressure
gradients, but the gradients are negligibly small.
6. Diffusion in a porous catalyst

Diffusion with chemical reaction is relevant to many
chemical engineering processes: diffusion with chemical
reaction in porous catalyst has received considerable atten-
tion over the years. We will consider pores of diameter
large enough to ensure continuum conditions, and a simple
model problem for which the reaction takes place at the
end of a pore, as shown in Fig. 2a. The reaction is the cat-
alytic dissociation of hydrogen, H2 ? 2H at z = 0. In a
one-dimensional model the absolute fluxes of species 1(H)
and species 2(H2) in a binary mixture are

n1 ¼ m1qvb þ j1 ð38aÞ
n2 ¼ m2qvb þ j2 ð38bÞ
Fig. 2. Diffusion in a pore with a dissociation reaction on the (a) end wall;
(b) side wall.
But what is the appropriate value of vb in one-dimensional
analysis? Adding Eqs. (38a) and (38b) given

n1 þ n2 ¼ qvb ð39Þ
at z = 0; vb = 0 for a catalytic reaction, so

vb ¼ vb10 ¼ 0 ð40Þ

On the other hand, the diffusion creep velocity from Eq. (4)
with b = (M1/M2)1/2

vw ¼
1� b

bþ m1ð1� bÞD12

dm1

dz
ð41Þ

and is negative (b < 1, dm/dz negative). In the case of equi-
mass counterdiffusion dealt with in Section 3, the bulk
velocity could be approximated by the slip velocity. This
case is also equimass counterdiffusion, but now the reac-
tion at z = 0, requires vb = 0. The correct solution must
be two-dimensional involving a flow towards z = 0 near
the walls, and away from z = 0 in the core. To obtain some
idea of relative magnitudes we can compare qvw to the dif-
fusion flux ji

j1 ¼ �qD12

dm1

dz
ð42Þ

qvw

j1

¼ � 1� b
bþ m1ð1� bÞ ð43Þ

For the H2 ? 2H problem, b = 0.707

� qvw

j1

¼ 1

2:41þ m1

ð44Þ

Table 2 shows that the ratio varies from 0.414 at z = 0, to
0.293 at z = L, for m1 varying from 0 to 1. As for diffusion
with one component stationary, there should be little error
in mass transfer rates given by a one-dimensional model
with vb = vw = 0. However, it would be useful to obtain
two-dimensional solutions to support this conjecture.

A problem more pertinent to porous catalysts is a
locally rate controlled reaction occurring on the side walls
of a pore, as shown in Fig. 2b. The classical analysis of this
problem assumes one-dimensional diffusion with the reac-
tion expressed in terms of the bulk concentration. There
is no change to Eq. (1) since the desorption of the product
is surely diffuse. As for the previous situations considered,
the two-dimensional character of the flow should have little
impact on mass transfer results. More importantly, it
would be inappropriate to include the effect of diffusion
creep without considering other complicating factors such
as temperature gradients causing thermal creep, and pres-
sure differentials across the pellet causing a bulk flow.
Table 2
The ratio of creep convective flux to diffusion flux for 2H ? H2 in a pore

m1 0.01 0.1 0.5 0.9 1.0
�qvw/j1 0.414 0.396 0.344 0.302 0.293
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7. Microgravity crystal growth

Diffusion and thermal creep are pertinent to crystal
growth experiments at microgravity in closed ampoules.
As was the case for isobaric diffusion in Section 3, a con-
vective flow is produced by the creep velocities (if the no-
slip condition were valid, there would be no flow: the gas
mixture would be stationary [24]). Two-dimensional solu-
tions for the isothermal case have been obtained by Papad-
opoulos and Rosner [25] using a direct simulation Monte
Carlo method to solve the governing Boltzmann equation
for nominal Knudsen numbers in the range 0.5–0.2 (the
nominal Knudsen number was defined in terms of the
length of the enclosure). It was found that end effects at
Kn = 0.5 have a marked effect on the creep velocity, as
might be expected. Calculations were performed for binary
gas mixtures with species of equal molecular weights but
different accommodation coefficients (see Appendix A), as
well as for unequal molecular weights and unity accommo-
dation coefficients. A flow circulation was found with the
core velocity in the opposite direction to the wall creep
velocity. The convective flow along the end wall, where
crystal growth occurs, could cause undesirable non-unifor-
mities. Further work is required to investigate this
possibility.

8. Closing comment

In the review process for this manuscript, a request was
made for comments on the relation between the present
work and that of Kerkhof et al. [26–28]. The present work
is a demonstration that various well known mass transfer
problems can be solved using the conventional conserva-
tion equations for species, and if necessary, momentum,
provided no-slip boundary conditions are replaced by dif-
fusion creep velocity boundary conditions. On the other
hand, Kerkhof and Geboers [27] argued that these conser-
vation equations could not be used: however, this assertion
was based on the concomitant use of the no-slip boundary
condition. In an earlier paper [26] they dismissed the deri-
vation of a diffusion creep velocity by Kramers and Kiste-
maker [6], on the grounds that ‘‘no clear indication of
velocity profiles was taken into account” and subsequently
ignored diffusion creep. Instead they chose to follow an
approach, originally suggested by Whitaker for the Stefan
tube [23], in which the species conservation equations are
replaced by species momentum equations. Models for the
species interaction terms are then introduced to yield, for
example, Eq. (44) of Kerkhof and Geboers [28]. These spe-
cies momentum equations have an unfortunate singularity
as species concentration goes to zero that is simply ignored.
Mills [29] discusses the relevance of the singularity to the
physical meaning of a species velocity. Of more concern
is that the final equations violate Fick’s law for binary dif-
fusion, or more generally, the Maxwell–Stefan equations
obtained from solving the Boltzmann equation for trans-
port of a mass species, given as Eqs. (7.4)–(48) of Hirschf-
elder et al. [30]. In solving these equations for diffusion in a
pore or capillary, they introduce Maxwell’s velocity slip
formula for slip flow applied to each species separately,
and rewrite the slip coefficient in terms of the Knudsen dif-
fusion coefficient. The result is essentially an interpolation
formula between slip flow and free molecule flow. Gra-
ham’s law is obtained, but in much the same way the dis-
credited dusty gas model also yields Graham’s law for
small but non-zero Knudsen numbers. An interpolation
formula that correctly gives the continuum limit has
recently been proposed by Young and Todd [17], based
on an analysis that appears to be free of the difficulties
inherent in the dusty gas and Kerkhof approaches.
Appendix A. The diffusion creep velocity

As was stated in Section 2, a formula for the diffusion
creep velocity was first derived by Kramers and Kiste-
maker, using a simple flow model of diffusion [6]. The mass
average creep velocity in terms of mole fraction gradient
is

vw ¼
M2

M

� �
M1

M2

� �1=2

� M1

M

� �

x1
M1

M2

� �1=2

þ x2

D12
dx1

dz
ðA:1Þ

This result assumes diffuse reflection of molecules, that is,
an accommodation coefficient a of unity. Subsequently
authors [17,31] have proposed formulas that allow
a1 6¼ a2 < 1. A fraction (1 � a) is reflected specularly, while
fraction a is either reflected diffusely or desorbed diffusely.
The motivation for allowing a1 6¼ a2 was to have a model
that would predict a non-zero creep velocity for two species
of equal molecular weight. Experiments [32] have shown a
non-zero creep velocity for mixtures of C2H2–N2 and CO2–
C3H8. However, there has been no direct experimental con-
firmation of the improved models because necessary data
for the relevant accommodation coefficients have not been
available. Thus we will restrict attention to results for dif-
fuse reflection.

There have been very many determinations of the diffu-
sion creep velocity using advanced kinetic theory. The
studies vary with different techniques used to solve the
Boltzmann equation, and different models for molecule
interaction have been used. All are one-dimensional. If a
Knudsen number is defined in terms of a characteristic
length of the surface, the results are only valid for small
Knudsen numbers: otherwise there are significant end
effects [25]. The important advances over the simplistic
model of Kramers and Kistemaker are (i) variables vary
continuously normal to the surface – there is no Knudsen
layer, and (ii) realistic models of molecule interaction have
been incorporated. Evaluation of these kinetic theory
results is made difficult by the use of various forms for
the creep velocity and imprecise definitions. In line with
many of the studies we will write



Table A.1
The diffusion creep coefficient for He–Ar mixtures; species 1 is helium

x1 r

1 2 3 4 5

0.01 0.22 0.252 0.194 0.2 0.908
0.1 0.255 0.285 0.228 0.3 0.989
0.5 0.72 0.629 0.534 0.6 1.64
0.9 2.88 2.91 4.03 2.9 4.74
0.99 6.14 5.94 5.03 6 8.25

Values from various authors: (1) Kramers and Kistemaker [6]; (2) Shari-
pov and Kalempa, realistic potential model [4]; (3) Sharipov and Kalempa,
rigid sphere model; (4) Ivchenko, Loyalka and Tompson, Lennard-Jones
model [3]; (5) Brenner and Bielenberg [36,37].
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vw ¼ rD12

dx1

dz
ðA:2Þ

where r is a dimensionless ‘‘diffusion” or ‘‘concentration”

creep coefficient. The Kramers and Kistemaker result is

rKK ¼
M2

M

� �
M1

M2

� �1=2

� M1

M

� �

x1
M1

M2

� �1=2

þ x2

ðA:3Þ

The only more advanced kinetic theory result that is in
algebraic form was obtained by Loyalka [33]. But in more
recent papers Loyalka and coworkers present new analyses
that yield numerical results: these presumably supercede
the 1971 formula, which will not be discussed further.
Ivchenko et al. [3] obtained numerical results for various
gas mixtures using the Lennard-Jones potential model.
Their results are given in the form of graphs of r versus
the mole fraction of species 1. In a more recent paper
[34], the same authors explored the consequences of using
first and second order Chapman–Enskog approximations,
and the rigid sphere versus Lennard-Jones potential mod-
els. Using the second approximation had only a small effect
when using the Lennard-Jones model, but a somewhat lar-
ger effect when using the rigid sphere model. For example,
consider H2–N2 mixtures with x1 = 0.01: for the Lennard-
Jones model the change in r was 3.3% while for the rigid
sphere model it was 8.1%.

Sharipov and Kalempa [4] give numerical results for
three mixtures of noble gases using both a rigid sphere
model and a ‘‘realistic” potential model obtained from
experimental data for the transport coefficients of mixture.
The Boltzmann equation was solved using the approximate
McCormack model. Takata and coworkers [5,35] also used
advanced kinetic theory to calculate diffusion creep veloci-
ties. Results are presented for a rigid sphere model and
molecular weight ratios ranging from 2 to 10. The exact
Boltzmann equation was used. To evaluate the adequacy
of the McCormack model, Sharipov and Kalempa made
comparisons with Takata’s results and showed agreement
to within 5%. Thus detailed comparisons will not be made
with Takata’s results here.

In contrast to the kinetic theory approach, Brenner and
Bielenberg [36,37] have proposed an interesting continuum
model for diffusion creep. It has its genesis in a hypothesis
that the correct velocity to use in the stress terms of the
Navier–Stokes equation for a variable density fluid is the
volume average value, rather than the mass average value
[36]. As a consequence it is proposed that the no-slip con-
dition at a wall should specify a zero volume average veloc-
ity. The resulting value of r is the simple form

r ¼ M2 �M1

M
ðA:4Þ

Follow the same procedure used to derive Eq. (10) for iso-
baric diffusion there results:
N 1

N 2

¼ �M2

M1

ðA:5Þ

which is in serious disagreement with Graham’s law.
To make comparisons of the various results for r we

will first consider helium–argon mixtures because a num-
ber of authors have obtained results for this system: also,
the large molecular weight ratio M2/M1 = 10 suggests that
simpler models will more likely work well. Table A.1
shows a comparison for r as a function of composition.
The approximate values shown for Ivchenko et al. are
due to the need to use a graph rather than numerical
results. It is seen that the kinetic theory results all agree
reasonably well, with the simple Kramers and Kistemaker
model doing remarkably well. By chance, it agrees better
(±10%) with the realistic potential models rather than
the rigid sphere model. In contrast, the continuum model
of Brenner and Bielenberg is in sharp disagreement with
the kinetic theory results. Table A.2 shows a comparison
for neon-argon mixtures. Again the r values for the realis-
tic potential models of Sharipov and Kalempa and
Ivchenko et al. are in very good agreement. The simple
Kramers and Kistemaker model gives values that are too
low by 18–22%. Surprisingly though, the Kramers and
Kistemaker model gives results in quite good agreement
with the rigid sphere results of Sharipov and Kalempa. It
is seen that when the molecular weights are closer (M2/
M1 = 2) a realistic potential model is required for accurate
results. Also, again the Brenner and Bielenberg model is in
sharp disagreement.

The air–water vapor system is of great interest in connec-
tion with both technology and atmospheric physics. The
movement of small non-Brownian droplets of water in air
due to diffusiophoresis is often of concern, and as shown
in Appendix D, the diffusiophoretic velocity of such drop-
lets is simply the negative of the diffusion creep velocity.
Ivchenko et al. [34] present results for air–H2O mixtures
in graphical form. Table A.3 shows a comparison with val-
ues obtained from the Kramers and Kistemaker formulas.
The latter values are seen to be consistently too large, the
discrepancy varying from 30% to 41%. Again the Brenner
and Bielenberg formula is in sharp disagreement.



Table A.2
The diffusion creep coefficient for Ne–Ar mixtures; species 1 is neon

x1 r

1 2 3 4 5

0.01 0.207 0.27 0.22 0.25 0.50
0.1 0.223 0.30 0.23 0.29 0.53
0.5 0.319 0.394 0.313 0.381 0.66
0.9 0.501 0.571 0.459 0.556 0.91
0.99 0.564 0.689 0.551 0.671 0.97

Values from various authors: (1) Kramers and Kistemaker [6]; (2) Shari-
pov and Kalempa, realistic potential model [4]; (3) Sharipov and Kalempa,
rigid sphere model; (4) Ivchenko, Loyalka and Tompson, Lennard-Jones
model [3]; (5) Brenner and Bielenberg [36,37].

Table A.3
The diffusion creep coefficient for air–H2O mixtures; species 1 is air

x1 �r

1 2 3

0.01 0.34 0.24 0.61
0.1 0.31 0.22 0.58
0.5 0.23 0.17 0.47
0.9 0.18 0.14 0.39
0.99 0.17 0.13 0.38

Values from various authors: (1) Kramers and Kistemaker [6]; (2)
Ivchenko, Loyalka and Tompson, Lennard-Jones model [3]; (3) Brenner
and Bielenberg [36,37].
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Appendix B. Equimolar counterdiffusion revisited

In Section 4, equimolar counterdiffusion was analyzed
using the Kramers and Kistemaker model for the diffusion
creep velocity. These authors also did experiments with
hydrogen–air mixtures to determine the pressure gradient
associated with equimolar counterdiffusion. The pressure
gradient is required to overcome wall shear since the mass
average velocity is not zero. As noted in Section 4, their
measured values of pressure gradient were 32% higher than
the expected value, a result they could not explain. A pos-
sible reason is that their diffusion creep velocity model is
inadequate. Table B.1 shows a comparison of their r values
with values given by Ivchenko et al. [3] for N2–H2 mixtures.
It is seen that their values are consistently higher than the
results using the Lennard-Jones potential model, the dis-
Table B.1
Diffusion creep coefficient r for N2–H2 mixtures

X N2
�r

1 2

0 10.22
0.05 5.46 4.9
0.25 1.43 1.2
0.5 0.327 0.5
0.75 0.312 0.25
1.0 0.196 0.15

(1) Kramers and Kistemaker [6]. (2) Ivchenko et al. [3]. The latter values
are obtained from a graph presented in Ref. [3].
crepancy varying from 13% to 30%. The values in Table
B.1 are approximate since they were read off a graph.

In order to calculate the pressure gradient we need val-
ues of v�w in terms of mole fraction to substitute in Eq. (25),
whereas Eq. (A.2) defines r in terms of vw. The relation
between v* and v is

v� ¼ vþ D12

1

M
dM
dz

ðB:1Þ

Substituting for v from Eq. (A.2)

v�w ¼ rD12
dx1

dz
þ D12

1

M
dM
dz

ðB:2Þ

or

v�w ¼ rþ M1 �M2

x1ðM1 �M2Þ þM2

� �
D12

dx1

dz
ðB:3Þ

Substituting in Eq. (25) and using Eq. (27)

dP
dz
¼ � 8lðx1ÞD12

R2L
rðx1Þ þ

M1 �M2

x1ðM1 �M2Þ þM2

� 	
ðB:4Þ

The r values in column 3 of Table B.1 were curve fitted as
r(x1) and substituted in Eq. (B.4). Also, the viscosity of the
mixture was calculated using the Lennard-Jones potential
model and Wilke mixture rule using the software GASMIX
[38], and curve fitted as l(x1). Numerical integration for
x1(0) = 0, x1(L) = 1 gives the pressure drop as

DP ¼ 4:75
�lD12

R2
ln

M1

M2

Pa=m ðB:5Þ

where �l is taken as l(x1 = 0.5) for convenience. To obtain
Eq. (B.5) all properties were calculated for a N2–H2 mix-
ture. In a second calculation r(x1) was taken from column
2 of Table B.1 (Kramers and Kistemaker) to give a coeffi-
cient of 4.19.

Thus the use of the Ivchenko et al. r values gives an
increase in pressure drop of 11.3% over the variable viscos-
ity Kramers and Kistemaker result, which partially explains
the 32% higher value obtained in their experiments.

Appendix C. Equimass counterdiffusion revisited

In Appendix B, it was found that numerical results for
the diffusion creep coefficient r could be incorporated in
a one-dimensional analysis of equimolar counterdiffusion
to obtain estimates of the pressure drop that are an
improvement over the result obtained by Kramers and
Kistemaker. In the case of equimass counterdiffusion, asso-
ciated with a zero pressure gradient, the situation is more
complicated. Eq. (14) gives

n1

n2

¼ m1f ðm1Þ � 1

m2f ðm2Þ þ 1
ðC:1Þ

where from the Kramers and Kistemaker result

f ðm1Þ ¼
1

M1=2
1

� 1

M1=2
2

m1

M1=2
1

þ m2

M1=2
2

ðC:2Þ
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In a one-dimensional analysis n1/n2 is a constant. Substitut-
ing Eq. (C.2) in Eq. (C.1) and evaluating at z = 0 (m1 = 1,
m2 = 0) and z = L (m1 = 0, m2 = 1) gives in both cases

n1

n2

¼ � M2

M1

� �1=2

ðC:3Þ

which is Graham’s law.
Eq. (C.1) can be solved for f(m1) in terms of C = n1/n2 as

f ðm1Þ ¼
C þ 1

m1 � Cð1� m1Þ
ðC:4Þ

The use of Eq. (C.2) for f(m1) with, for example, M1 = 1,
M2 = 4, shows that C = �1/2 satisfies Eq. (C.4), as ex-
pected from Graham’s law. But, if advanced kinetic theory
results for the diffusion creep coefficient are used for f(m1),
it is found that Eq. (C.4) is not exactly satisfied, which sug-
gests that a simple one-dimensional solution is not possible.
Note also that, since tw is not constant, there is a small
pressure gradient associated with acceleration which con-
tradicts the isobaric diffusion assumption. It does not ap-
pear profitable to attempt further analysis of the isobaric
diffusion case.
Appendix D. Diffusiophoresis

An important manifestation of diffusion creep is the dif-
fusiophoresis of large (non-Brownian or Stokesian) parti-
cles, that is, particle movement due to species
concentration gradients in the host gas mixture. It is anal-
ogous to thermophoresis, which is the movement of parti-
cles down a temperature gradient. Indeed, Maxwell
developed his theory of thermal creep in order to explain
the phenomenon of thermophoresis [1]. A useful review
of early work on diffusiophoresis and thermophoresis was
given by Waldmann and Schmitt [39]. As was the case
for diffusion creep (and perhaps even more so!), particular
care must be taken to use consistent mass or molar
formulations.

Although our concern here is large particles, it is helpful
to first consider small Brownian particles. Waldmann and
Schmitt [39] give the diffusiophoretic velocity for small
spherical particles (dp� ‘) as

V D ¼
X

i

limi ðD:1Þ

For equal accommodation coefficients

li ¼
xiM

1=2
iP

kxkM1=2
k

ðD:2Þ

Substituting

mi ¼ m þ m̂i ¼ m� þ m̂�i ðD:3Þ

in Eq. (D.1) gives

V D ¼ m þ
X

i

lim̂i ¼ m� þ
X

i

lim̂
�
i ðD:4Þ
We now consider one-dimensional diffusion in a binary
mixture. On a molar basis

x1v̂�1 ¼ �x2v̂�2 ¼ �D12

dx1

dz
ðD:5Þ

Substituting in Eq. (D.4) and using Eq. (D.2)

V D � v� ¼ � M1=2
1 �M1=2

2

x1M1=2
1 þ x2M1=2

2

D12

dx1

dz
ðD:6Þ

On a mass basis

m1v̂1 ¼ �m2v̂2 ¼ �D12

dm1

dz
ðD:7Þ

V D � v ¼
x1

m1
M1=2

1 � x2

m2
M1=2

2

x1M1=2
1 þ x2M1=2

2

D12
dm1

dz
ðD:8Þ

Using xi = (mi/Mi)/
P

mkMk, Eq. (D.8) can be obtained in
terms of mass quantities only as

V D � v ¼ �
1

M1=2
1

� 1

M1=2
2

m1

M1=2
1

þ m2

M1=2
2

D12

dm1

dz
ðD:9Þ

Particle transport in a binary mixture with one component
stationary is often encountered, e.g. for condensation of a
vapor and a noncondensable gas. In this situation it is use-
ful to have an expression for the absolute particle velocity
VD. From Eqs. (D.1) and (D.2) for a binary mixture with
v2 = 0 and a1 = a2

V D ¼ l1v1 ¼
x1M1=2

1

x1M1=2
1 þ x2M1=2

2

m1 ðD:10Þ

that is, the particle velocity is in the same direction as the
velocity of the non-stationary species. Clearly, the station-
ary species cannot cause the particle to move. Now consid-
ering one-dimensional diffusion and v2 = 0

v1 ¼ �
1

x1ð1� x1Þ
D12

dx1

dz

thus

V D ¼ � M1=2
1

x1M1=2
1 þ x2M1=2

2

1

x2

dx1

dz
ðD:11Þ

Eqs. (D.8), (D.9), and (D.11) for small particles were
derived using a kinetic theory model since the mean free
path in the gas was much larger than the particle size
(Knp large). For large (non-Brownian particles) Knp ? 0.
Waldmann and Schmitt [39] consider a spherical particle
at rest in an isothermal binary mixture and determine the
force acting on the particle due to diffusion creep. This
force is then equated to the continuum model Stokes drag
to give the velocity that an otherwise free particle will
move, which is the diffusiophoretic velocity. Using the Kra-
mers and Kistemaker model for the diffusion creep velocity
they obtained results identical to those obtained for small
particles! Furthermore, they showed that the result for
large particles was independent of particle shape. Thus,
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Eqs. (D.8), (D.5) and (D.11) should apply to particles of
any size. Since the Kramers and Kistemaker diffusion creep
model is a kinetic theory model, albeit applied to a Knud-
sen layer adjacent to the surface, it is perhaps not unex-
pected that VD is independent of particle size and particle
Knudsen number.

Waldmann and Schmitt [39] evaluated these equations
for large particles using various experimental data, and
concluded that the agreement was poor. Thus they recom-
mend an empirical alternative to Eq. (D.6)

V D � v� ¼ � 0:95
M1 �M2

M1 þM2

� 1:05
d1 � d2

d1 þ d2

� �
D12

dx1

dz

ðD:12Þ
where d1 and d2 are the molecular diameters of the two gas
components. However, it may not be prudent to accept
their suggestion at face value because the experimental
measurement of diffusiophoretic velocities is very difficult.
Furthermore, often sufficient details are available to per-
form satisfactory error analyses of the experiments.

If we accept that Eq. (D.9) is valid for large particles,
there is an interesting consequence for isobaric diffusion
in a duct. As shown in Section 3.2, the mass average veloc-
ity of the gas mixture is equal to the diffusion creep velocity
given by Eq. (4). Substituting in Eq. (D.9) shows that
VD = 0! That is, free particles in the gas mixture will be sta-
tionary. As a corollary, this observation indicates that care
must be taken to identify possible diffusion creep induced
flows in experiments designed to determine diffusiophoretic
particle velocities.

Diffusiophoresis in the continuum limit, Knp ? 0 has
recently received the attention of Brenner and Bielenberg
[36,37]. Their approach is a purely continuum model with
no utilization of kinetic theory. The diffusion creep velocity
given by their analysis is discussed in Appendix A, where it
is shown that it does not yield Graham’s law. The resulting
diffusiophoretic velocity is

V D � v� ¼ � M1 �M2

x1M1 þ x2M2

D12

dx1

dz
ðD:13Þ

A comparison of the Brenner and Bielenberg diffusion
creep velocity, namely

v� ¼ M1 �M2

x1M1 þ x2M2

D12

dx1

dz
ðD:14Þ

with advanced kinetic theory results is given in Appendix
A. Since the empirical Eq. (D.12) has a coefficient indepen-
dent of composition, it is pointless to compare it with
Eq. (D.13) for which there is a marked composition
dependence.
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